

El pascal y Factores de Conversión de Unidades de Presión y Vacío

Blaise Pascal

La unidad de la magnitud de presión es el pascal (Pa), en honor al matemático francés Blaise Pascal (1623-1662), quien confirmara el papel que desempeñaba la presión atmosférica y quien estableciera el que la presión aplicada sobre un punto de un líquido incompresible se transmite con la misma intensidad en todas las direcciones (principio de Pascal).

Surgimiento del pascal en el SI

La presión es una fuerza por unidad de superficie y puede expresarse en pascales. En el Sistema Internacional de unidades (SI) esta normalizada con el nombre de pascal, de símbolo Pa de acuerdo con la 14ª Conferencia General de Pesas y Medidas (CGPM) que tuvo lugar en París en 1971. En la 14ª CGPM se incorporó al mol como séptima unidad de base y se introdujo el pascal y el siemens.

La presión y el pascal en el SI

En la actualidad, la comunidad científica internacional ha adoptado al SI, para este sistema la unidad de presión esta dada en: newton por metro cuadrado, denominado pascal:

 $1 Pa = N/m^2$

o se puede expresar en unidades base del SI:

1 Pa = $m^{-1} \cdot kg \cdot s^{-2}$

Somos su Relevo a la Calidad

La Guía MetAs, es el boletín periódico de MetAs & Metrólogos Asociados.

En *La Guía MetAs* se presentan noticias de la metrología, artículos e información técnica seleccionada por los colaboradores de MetAs & Metrólogos Asociados, que deseamos compartir con nuestros colegas, usuarios, clientes, amigos y con todos aquellos relacionados con la metrología técnica e industrial.

Calle: Jalisco # 313. Colonia: Centro 49 000, Cd. Guzmán, Zapotlán El Grande, Jalisco, México Teléfono & Fax: 01 (341) 4 13 61 23 & 4 13 16 91 E-mail: metas@metas.com.mx. Web: www.metas.com.mx

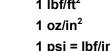
Servicios Metrológicos:

Laboratorio de Calibración:

Presión, Alto Vacío, Temperatura, Humedad, Eléctrica, Vibraciones

Ingeniería:

Venta de Instrumentos, Desarrollo de Sistemas, Reparación y Mantenimiento


Gestión Metrológica: Subcontratación de Servicios, Selección de Proveedores

Consultoría:

Capacitación, Entrenamiento y Asesoría en Metrología y su Relación con Sistemas de Calidad

LA GUÍA METAS Página 2

Unidad de Presión y Vacío	Factor de Conversión	Observaciones
1 mmH₂O @ ≈4 °C	9,806 65	(1) (3) (≈ 1 000 kg/m³)
1 mmH₂O @ 4 °C	9,806 38	(1) (999,972 kg/m³)
1 mmH₂O @ 60 °F	9,797 0	(1)
1 mmH₂O @ 20 °C	9,789 1	(1)
1 mmH₂O @ 25 °C	9,777 7	(1)
1 inH₂O @ ≈4 °C	249,088 9	(1) (3) (≈ 1 000 kg/m³)
1 inH₂O @ 39,2 °F	249,082 0	(1)
1 inH₂O @ 60 °F	248,840 0	(1)
1 inH₂O @ 20 °C	248,64	(1)
1 inH₂O @ 25 °C	248,35	(1)
1 ftH₂O @ 39,2 °F	2 988,980	(1)
1 ftH₂O-mar	3 068,2	(1)
1 μmHg (micrón) @ 0 °C	0,133 322 4	(1) (2) utilizado en alto vacío
1 mmHg @ 0 °C	133,322 4	(1) (2)
1 Torr	133,322 4	(1) (2) utilizado en alto vacío
1 inHg @ 0 °C	3 386,388	(1) (2)(ITS-90)
1 inHg @ 32 °F	3 386,380	(1) (2)
1 inHg @ 60 °F	3 376,850	(1)
1 kgf/cm ²	98 066,5	Exacto (1)
1 at (atmósfera técnica) = 1 kgf/cm²	98 066,5	Exacto (1)
1 atm (atmósfera normalizada)	101 325	Exacto (1)
29,921 26 inHg @ 32 °F	101 325	Exacto (1) (2)
760 mmHg @ 0 °C	101 325	Exacto (1) (2)
1 mbar	100	Exacto (temporal del SI)
1 bar	100 000	Exacto (temporal del SI)
1 mPa	0,001	Exacto (SI)
1 hPa	100	Exacto (SI)
1 kPa	1 000	Exacto (SI)
1 MPa	1 000 000	Exacto (SI)
1 GPa	1 000 000 000	Exacto (SI)
1 poundal/ft²	1,488 164	(1) (Sist. inglés)
1 lbf/ft ²	47,880 26	(1) (Sist. inglés)
1 oz/in²	430,922 3	(1) (Sist. inglés)
1 psi = lbf/in ²	6 894,757	(1) (Sist. inglés)

1 kip/in² (ksi)

Los factores de conversión indicados nos indican el equivalente en pascales (Pa) de la unidad en la columna de la izquierda.

(1) (Sist. inglés)

6 894 757

- (1) Aceleración normalizada de la gravedad = 9,806 65 m/s²
- (2) Densidad del mercurio = 13 595,08 kg/m³ @ temperatura = 0 °C & presión = 1 013,25 hPa
- (3) Densidad del agua = 1 000 kg/m³ @ temperatura = 4 °C & presión = 1 013,25 hPa

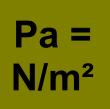
Página 3 LA GUÍA METAS

Debido a que el pascal es una unidad muy pequeña y a efectos de facilitar la transición de un sistema a otro, se ha optado por utilizar los prefijos del SI en forma de múltiplos y submúltiplos como son: milipascal (mPa), hectopascal (hPa), kilopascal (kPa), megapascal (MPa) y gigapascal (GPa), de modo que no requiere mayor esfuerzo admitir dicho cambio en la denominación.

De acuerdo con la OIML R 97, la unidad oficial para expresar la presión atmosférica en unidades del SI es el kilopascal (kPa). Sin embargo debido a la amplia difusión del mbar, del mmHg y de las inHg en la graduación de barómetros, la ICAO (International Civil Aviation Organization) y la WMO (World Meteorological Organization) han adoptado al hectopascal (hPa), el cual es idéntico al milibar (1 hPa = 1 mbar), para el ajuste de altímetros y la medición de presión atmosférica.

Referencias

Aranda, V. Aranda, G. & Medrano, S. (2001). <u>Columna de líquido, manómetro "primario" en laboratorios "secundarios"</u>. Simposio de Metrología 2001-mayo. La Guía MetAs 2001-octubre.


Creus, A. (1979) <u>Instrumentración Industrial</u>, Editorial: Marcombo, México-Barcelona.

Gomis, A. (2002). ¿Quiénes fueron los científicos que dan nombre a las unidades físicas?, Ciencia Digital, S.L.

Nava, H. Pezet, F. Mendoza, J. & Hernández, J. (1997). El Sistema Internacional de Unidades (SI), Publicación técnica CNM-MMM-PT-003, CENAM, México.

Oceano, Enciclopedia. (2003). <u>Física</u>. Enciclopedia Temática Universal, Nuevo Autodidáctica. Editorial OCEANO, España.

OIML R 97. (1990). <u>Barometers</u>. Recomendación internacional, Organisation Internationale de Métrologie Légale.

